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Waves due to a steadily moving source on a 
floating ice plate 

By J. W. DAVYS, R. J. HOSKING AND A. D. S N E Y D  
University of Waikato, Hamilton, New Zealand. 

(Received 15 November 1984 and in revised form 14 March 1985) 

The propagation of flexural waves in floating ice plates is governed by two restoring 
forces - elastic bending of the plate, and the tendency of gravity to make the upper 
surface of the supporting water horizontal. This paper studies steady wave patterns 
generated by a steadily moving source on a water-ice system that is assumed to be 
homogeneous and of infinite horizontal extent, using asymptotic Fourier analysis to  
give a simple description of the wave pattern far from the source. Short-wavelength 
elastic waves propagate ahead, while the long gravity waves appear behind; and, 
depending on the system parameters, one, two or no caustics may appear. Wavecrest 
patterns are shown, and the amplitude variation with direction from the source is 
given. Where the two caustics just merge together, a special mathematical function 
analogous to the Airy function is introduced to describe wave amplitudes. These 
waves can be detected by a strainmeter embedded in the ice, and we compare its 
theoretical response with some experimental measurements. 

1. Introduction 
The sea-ice cover in McMurdo Sound, Antarctica, has been used as an aircraft 

runway since the International Geophysical Year (195?/58). When the ice is about 
24 m thick it can support large aircraft such as the LC-130 Hercules carrying heavy 
payloads, but since i t  changes seasonally there is a restricted period of safe 
operation - usually mid-August to mid-December. Predicting ice strength is thus a 
matter of some practical importance. 

As an aircraft comes in to land, the ground immediately beneath is subject to  
increased air pressure, the total excess pressure force equalling the aircraft weight. 
This travelling force generates a system of waves which propagate through the ice 
and the water i t  floats on, in much the same way as a ship sets up the well-known 
Kelvin wave pattern. Instruments placed on the ice can detect these waves, and 
analysis of the data could provide information on the ice sheet, without the aircraft 
even touching down. At McMurdo Sound these waves were first recorded on a 
strainmeter built and maintained by members of the Physics Department of the 
University of Waikato (Funnel1 1982). 

For analytical purposes a reasonable model is an elastic homogeneous ice plate of 
infinite extent, resting on incompressible inviscid fluid of constant depth. (Over long 
timescales ice can behave as a viscoelastic material, but this effect is ignored here.) 
The dispersion relation for plane waves in this system was given almost 100 years 
ago by Greenhill (1887). Kerr (1976) gives a comprehensive survey of research into 
the response of floating ice to static loads, and Kheisin (1971) studies the effect of 
a concentrated line load that begins to move a t  time t = 0. A steady load moving 
with constant speed Vis considered by Nevel(1970), but as with most previous work 
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the emphasis is on calculating stresses near the load region, with a view to predicting 
fracture. Here we are more concerned with determining the wave field far from the 
aircraft where the recording instrument would be placed. Since we shall also assume 
that the waves are generated by a constant load travelling at constant speed, a 
suitable mathematical technique is asymptotic Fourier analysis - c.f. for example 
Lighthill (1978). This technique has been applied by Mills ( 1972) to  steadily moving 
oscillatory loads, but this paper is rather inaccessible and gives only a sketchy picture 
of the wavecrest pattern with little discussion of cusps and caustics. It also contains 
an important mistake. 

The dispersion relation for waves in the model system is discussed in 5 2. Since there 
are two restoring forces - elastic forces from the bending of the ice plate, and gravity 
forces as for ordinary water waves - there are two limiting wave types. Short- 
wavelength elastic waves have a group velocity greater than their phase velocity and 
propagate ahead of the source, whereas the longer gravity waves propagate behind. 
I n  53 the wavecrest pattern is described, which varies dramatically with source speed 
V and to a lesser extent with other parameters. Of particular interest are caustics, 
and, depending on the value of V ,  one, two or no caustics may be present. For large 
enough V a shadow zone without waves forms behind the source. Section 4 describes 
the variation in wave amplitude (and hence energy) with direction from the source, 
and i t  appears that most energy is radiated by the gravity-wave part of the spectrum, 
particularly near the caustics. Where two caustics just merge, a special mathematical 
function analogous to  the Airy function is necessary, which is discussed in the 
Appendix. Section 5 describes the geophysical wire strainmeter that has been used 
to detect the presence of waves, and we calculate its theoretical response as a function 
of time during an aircraft approach. Comparison is then made with experimental 
measurements. 

2. Dispersion relation 
Consider an infinite homogeneous ice sheet of thickness h and density pi floating 

on water of density p ,  as shown in figure 1.  The upper undisturbed water surface 
is z = 0 and the equation of the sea bed z = - H .  If ~(z, y ,  t )  represents a small vertical 
ice-sheet deflection, then the equation of motion of the ice sheet is 

where 
Eh3 

D =  
12(1-v2)’ 

E being Young’s modulus and v Poisson’s ratio for ice, p the water pressure a t  z = 0 
and f(x, y, t )  the downward external stress exerted on the ice. The sea water flow is 
taken to be irrotational with velocity potential 4 ,  so that Bernoulli’s theorem gives 

P = -P(4t)z-o-PS71. 
Combining (2.1) and ( 2 . 2 ) ,  we find 

DV47 + Pi h ~ t t  = - ~ ( 4 t ) z  - 0 - ~ 9 7  -f. (2.3) 
In  (2.2) and (2.3) we have made the usual linear wave-theory approximation of 
evaluating perturbed quantities on z = 0 rather than the true water surface z = 7. 
Typical figures for ice in McMurdo Sound would be E = 5 x loQ N m-2, h = 2.5 m, 
H = 350 m and v = 4. Unless otherwise stated, all calculations will be based on these 
parameter values. A typical source speed (aircraft landing speed) is V = 50 m/s. 
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FIQURE 2. Graphs of phase speed (a)  and group speed ( b )  against wavenumber k. The solid curves 
are for water of depth 350 m and the dashed curves for water of infinite depth. Note that the 
wavenumber scale is logarithmic. 

The dispersion relation for uniform plane waves with 7 everywhere proportional 
to exp [i(kz-wt)] can be found by substitution into (2.3) with f = 0, and using the 
kinematic boundary condition 

qt = ($,),-, = k tanh kH ($),=,. 

One obtains (2.4) 

Figure 2 shows graphs of the phase speed c = w/k and group speed cg = dw/dk against 
k for the McMurdo Sound parameters, and also for infinitely deep water. 

There are three important lengthscales associated with this dispersion relation - a 
short scale characterized by the (modified) ice thickness h', a long scale characterised 
by the water depth H, and an  intermediate scale corresponding to the reciprocal 
wavenumber k;' x (3Dlpg)f w 40 m for which the phase speed is minimum, and 
where the effects of ice elasticity and gravity are comparable. For very short waves 
where kh' 2 O( 1) 
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and the group speed is twice the phase speed, so these elastic-dominated waves appear 
ahead of the moving source. Since k, h’ + 1 and k, H $- 1, the dispersion relation for 
waves of intermediate length can be approximated by 

Dk5 
w2 x -+gk; 

P 

and the minimum phase speed cmin, a t  which the group and phase speeds are equal, 
is therefore given by 

cmin x 2 - = 22.5 m/s. (2;Y 
For long waves where kH < 0(1) 

w2 x gk tanh k H ,  

which is just the dispersion relation for gravity waves on water of depth H .  Their 
group speed is less than their phase speed, so they appear behind the source. 

For all but the very shortest waves (kh’ 2 O(1)) the dispersion relation (2.4) can 
be approximated by 

o - -+i gk tanhkH. 2-(T ) 
We shall be concerned only with waves longer than about 50 m, so we can use (2.6) 
instead of (2.4) without significant loss of accuracy - i.e. we may ignore the small 
ice-sheet acceleration term in (2.1). 

3. Steady wave patterns 
Asymptotic Fourier analysis 

Equation (2.3) may be solved formally by taking a Fourier transform in x, y and t : 

f ( E ,  m, w )  = ( 2 x ) - t  ~ ( z ,  y, t)  ei(zr+mu-wt) ds dy dt.  

Assuming that the disturbance tends to zero a t  infinity, one finds 

J 

where k2 = Z2+m2. If we now suppose that f(x, y, t )  represents a steady stress 
distribution travelling with speed V in the x-direction, we can write 

so that 

where the Fourier transform P is taken with respect to only two variables, and S 
denotes the Dirac delta function. 

For a steady wave pattern, the component of the source velocity V f  normal to 
any wave crest must equal the crest phase speed, i.e. 

= w/k or c = V cosp, (3.3a, b) 
vz 
k 
- 
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FIGURE 3. (a) Wavenumber curve C, for V = 50 m/s. (b) Wavecrest construction in (5, y)-plane. 

where /3 is the angle between the wavenumber vector k and the source velocity (see 
figure 3). This condition is reflected by the presence of the delta function in (3.2). 
Fourier inversion of (3.1) gives 

where 

B(2, m) = Dk4+pg-ph’V2Z2-- v2z2 coth kH.  
k 

Note that B(Z, m) = 0 is just the dispersion relation (2.4) with w replaced by Vl 
according to ( 3 . 3 ~ ) .  

Generally one would not expect to be able to evaluate the integral in (3.4) 
analytically, although several special cases for simple loading functions f are 
considered by Nevel(l970). To describe the wave pattern we need to know 7 far away 
from the region where load is applied, so we can use asymptotic methods - cf. for 
example Lighthill (1978, $4.9 et seq). The wave pattern is determined from the 
wavenumber curwe Ck in the (1 ,  m)-plane, whose equation B(Z, m) = 0 is the steady-wave 
condition (3.3) combined with the dispersion relation (2.4). Only waves with 
wavenumbers lying on Ck will appear in the steady pattern. From any point 
(lo, m,) = Po say, on c k ,  waves are radiated in the direction of the normal to c k  at 
that point (in the sense of increasing w )  along the line L in the corresponding direction 
in the (z, y)-plane, as shown in figure 3. The time of observation is always chosen 
to be the instant the travelling load reaches the origin of the (2, y)-plane, so that 
waves are always radiated from this point. The ice displacement r,~ is given by the 
formula 

where r is distance from the origin (or source), K~ is the magnitude of the curvature 
of C, at Po, a/& is differentiation normal to c k  in the sense of w increasing, and 8 
is a phase factor = i n  if c k  is convex to the n-direction at  Po and tn otherwise. 
Sometimes there are several points on C,  at which the normal is parallel to a given 
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direction, in which case 71 is the sum of contributions of the form (3.6) from each such 
point. 

The wave crests are lines of constant phase, 

Zoz+moy = x . k o  = K 

(see figure 3), where K is a constant. Thus to each point Po on C, there corresponds 
a point on the wavecrest, whose polar coordinates in the (5, y)-plane are 

As Po moves around C,, the above point will trace out a wavecrest. At any point of 
inflection on Ck the corresponding line L will be a caustic, and wavecrests will have 
cusps a t  their points of intersection with L. 

I n  figure 3, Q is the point on c k  such that OQ is a tangent. Since /3 is maximum 
a t  Q it  follows from (3.3b) that c is a minimum and that c = cmin = cg a t  this point. 
As Po approaches Q from either side, x+$, so the wavecrest goes off to  infinity. Thus 
wavecrests can be divided into two classes - those emanating from points on Ck to 
the left of Q where c > cg,  and which constitute the predominantly gravity-wave 
region, and the predominantly elastic waves from points to  the right of& where c < cg.  

Effect of source speed 

Figure 4 shows wavenumber curves for different values of the source speed V ,  other 
parameters being held constant. For a typical V of 50 m/s each symmetric half of 
C, has two points of inflection giving rise to two caustics, and as V decreases, these 
move together and eventually coincide when V = V,, say, = 37.5 m/s. If V is further 
decreased, the points of inflection disappear. Points of inflection are not easily seen 
on Ck, and figure 5 shows graphs of the angle 8 between the normal to Ck and the 
l-axis against k. The wavecrest patterns corresponding to three of the curves in 
figure 4 are shown in figure 6. For V = 50 m/s each crest in the gravity-wave region 
has two cusps, while for the smaller V-values there are none. 

It can be seen from figure 2 that  the maximum phase speed for gravity-dominated 
waves ( c  > c g )  is attained in the long wavelength limit and is equal to (gH)? = V,, say. 
Thus (3.3b) shows that for gravity waves 

'min < VC - \ cos p < -, 
V V 

so if V < V,, /3 ranges from 0 to c0s-l (cmin/V),  while if V > V, the lower bound for 
/3 is c0s-l ( V J V ) .  I n  the latter case /3 is always strictly greater than 0, so that no 
gravity waves appear directly behind the source. Such waves emanate from R ,  the 
leftmost point of intersection of Ck with the l-axis, so if V > V, the point R cannot 
exist-i.e. Ck must pass through the origin. (Mills (1972) presents graphs that 
incorrectly show Ck intersecting the m-axis away from the origin.) 

V2 

Close to the origin the wavenumber curve can be approximated by 

- C O S ~ ~  = 1 - ik2H2,  
v: (3.7) 

where we have used the small-argument expansion tanh z x z-kz.". For V < V, (3.7) 

(3.8) 
can be written in the form 

k2 = k; + - sin2 /3, 
3 v2 

H2 VE 
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FIGURE 4. Wavenumber curves C, for a variety of speeds. The curve V = 50 has two points of 
inflection. As V decreases, these move together and coincide when V = V, = 37.5, so that this curve 
has a very straight section. For smaller values of V there are no points of inflection, and for values 
larger than V, there is just one. Note that as V decreases towards cmin = 22.5 the curves shrink 
towards a single point. 

x 100 m 

2 4 6 8 

FIGURE 5. Graphs of the angle B between the normal to C, and the 1-axis, against wavenumber 
k: (1) source velocity V = 30.0 m/s; (2) 37.5 m/s (=  V,) ;  (3) 50.0 m/s; (4) 58.6 m/s (=  V c ) ;  (5) 65.0 
m/s. 

where (k, p )  are polar coordinatecl in the ( I ,  m)-plane, and k, = [3( VE- V 2 ) ] f / H V ,  is 
the coordinate of the intersection point R. If V = V, (3.7) becomes 

4 3  k = f- sinp, 
H 

which represents a pair of circular arcs touching at the origin, and finally if V > V, 
the approximate form of (3.7) is 

p = - 3P (cos2 po - cos2 B),  Po = cos-1- VE , 
H Z  v: v2 
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I' 

FIGURE 6. Wavecrest patterns for (a )  V = 30 m/s, there are no caustics and no cusps; ( b )  37.5 m/s, 
the two caustics have merged and there are no cusps; (c) 50 m/s, C, has two points of inflection, 
so there are two caustics and wavecrests in this region have two cusps. 

which represents a pair of curves intersecting at the origin and making angles +Po 
with the 1-axis. Figure 7 shows the part of C, close to  the origin for various values 
of V close to V,. 

When V < Vc and C, does not pass through the origin, then the angle between its 
normal and the l-axis assumes all possible values from 0" to 360°, so that waves are 
radiated in all directions. But if V 2 V, this angle will not cxcecd a certain value 8max, 
say, which is somewhat less than 180" (see figure 5). In  the corresponding wave 
pattern (figure 8) a shadow zone appears behind the source, no waves being radiated 
into the triangular region Om,, < 8 < 360" - emax. Despite the sudden appearance of 
this shadow zone, 7 remains a continuous function of V as this variable increases 
through V,. From figure 7 we can see that for V just less than V, (curves 1 and 2) ,  
the portion of C, that  radiates waves almost directly behind the source - i.e. that  
portion close to the origin - has large curvature, so that the amplitude of will be 
small. Indeed this amplitude tends to zero as V+ V, from below. 

Figure 9 is a graph of the caustic directions against V, and shows the three regions 
where there are no caustics, two caustics or one caustic. If V is just less than V, then 
the curve (3.8), which approximates C, close to the origin, has a single point of 



Waves due to a steadily moving source on a $outing ice plate 277 

FIQURE 7. Wavenumber curve C, near the origin for water of depth 350 m: ( I )  source velocity 
V = 50.0 m/s; (2) 55.0 m/s; (3) 58.6 m/s ( =  V c ) ;  (4) 65.0 m/s; (5) 75.0 m/s. The crosses mark the 
approximate points of intersection 2 = k, (see (3.8)) of the curves with the Z-axis, when V < V,. 

V 

30 V, 70 

V 
FIQURE 8. Wavecrest pattern for V = 60 m/s in water of depth 350 m. Note the region behind 
the source where no waves appear. 

FIQURE 9. Graph of caustic directions against source speed V .  The dashed curve represents the 
approximate formula (3.9). 

inflection at /3 E ($)4, where E = 1 - V z /  VZ, is small. At this point the angle between 
the tangent and the positive Z-axis z 2(2~):, so the first caustic direction is given by 

which reflects the behaviour of the lower curve in the two-caustic region of figure 9 
as V+ V,. 

Figures S ( c )  and 8 show regions of intersecting wavecrests. This situation arises 
when there is more than one point of C,  where the normal direction is equal to  the 
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direction from the source, so that waves of different wavenumbers are radiated into 
the same region. I n  such a region the wave phase is undefined. 

Critical speed 
Figure 2 shows that the phase speed c has a minimum value cmin - often called the 
critical speed - where 

c = cmin = cg x 22.5 m/s. 

Equation (3.3b) shows that p cannot exceed 
C '  p,,, = cos-1- v .  

Figures 6 (a-c) all correspond to V > cmin, so that p,,, is a well-defined angle between 
0" and 90". As V decreases towards cmin, /3,,,+0 and the wavecrests tend to become 
straight and perpendicular to V.  Also the wavenumber curve Ck shrinks and 
degenerates to  a single point when V = cmin, so a t  this critical speed only waves of 
phase speed cmin propagating parallel to  V appear in the steady pattern. When 
V = cmin we also have V = cg,  so for a source travelling a t  the oritical speed energy 
is radiated directly forward a t  the same speed and will continuously accumulate 
underneath the s0urce.t For I' = cmin no steady wavepattern can exist (unless some 
energy-dissipation mechanism is included in the model), and the energy deneity close 
to the source will grow linearly in time. Since energy density is proportional to  the 
square of the ice deflection, the latter will increase as 6, as found by Kheisin (1971) 
for the corresponding two-dimensional problem. 

It is well known that considerably amplified deflections can occur if a vehicle is 
driven over ice at a certain speed, which depends on ice thickness and water depth. 
Nevel (1970) found his expressions for ice deflection to be singular at a certain value 
of V ,  which can be identified mathematically with cmin (see Davys 1984, 52.4). 
Squire et al. (1986) have identified cmin as the vehicle speed that produces maximum 
compressive strain in the ice, and have used measurements of cmin to estimate E (cf. 
(2.5)). 

If V < cmin a steady wavepattern cannot be established, since (3.3) cannot be 
satisfied. Any waves generated by the source will radiate away from it. 

Water waves have properties that are quite similar to those we have just 
described - surface tension playing the role of ice-sheet elasticity. Longuet-Higgins 
(1977) has drawn closed wavenumber curves for gravity-capillary waves which are 
similar to the c k  shown in figure 4, and a discussion of related effects for water waves 
may be found for example in Lighthill (1978, 553.9, 3.10). 

4. Wave amplitudes 
From (3.6) one sees that the wave amplitude falls off as r-4 and is proportional to  

K~- : .  Thus relatively straight sections of Ck where K,, is small give rise to  large wave 
amplitudes, because all points of that section radiate waves in approximately the 
same direction. At a point of inflection of c k ,  K~ = 0 and (3.6) predicts an infinite 
amplitude. In this case the asymptotic expression must be modified, and for waves 
radiated from the neighbourhood of a point of inflection Po one finds 

t We understand that  M. J. Hinohey has independently made this identification of the critical 
speed with the group speed in a paper not yet published. 
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FIGURE 10. Graphs of wave amplitude I I against direction from the source 8, a t  a distance 
r = 1000 m from the source. The source strength is 5 x lo4 kg weight - equivalent to a Hercules C130 
aircraft. (a) V = 30 m/s, there are no caustics, and (3.6) is used throughout. (b) V = 50 m/s, and 
there are two caustics, indicated by the vertical dashed lines. (1) is a graph of (3.6); (2) is a graph 
of (4.1) applied to the caustic at 8 = 152"; and (3) is a graph of (4.1) applied to the caustic a t  
8 = 164'. The curve indicated by the large dots represents a reasonable interpolation between the 
three formulae. (c) V = 37.5 m/s, and the two caustics have just merged together. (1) is a graph 
of (3.6), and (2) is a graph of (4.2). 

where d is normal distance from the caustic line L in the (2, y)-plane, Ai is the Airy 
function, and K ,  is dlclds evaluated at Po, 5 being arclength along C,. 

Where two points of inflection merge together, both K and dK/ds vanish, and (4.1) 
predicts infinite amplitudes. At such a point the normal direction could be called a 
'supercaustic', and the modified asymptotic expansion for r,~ in the neighbourhood 
of a supercaustic is derived in the Appendix. We find 

where the function Sc is analogous to  the Airy function in (4.1), and K,, is d2K/ds2 
evaluated at Po. 

Figure 10 shows graphs of wave amplitude against 6. When no caustics are present 
(3.6) can be used throughout, in which case the r-dependence factors out, so the 
amplitude-versus-6 graphs are similar for all r ,  but scaled by the factor r d .  When 
caustics are present the amplitude decays with r in two different ways - either as r-? 
normally, or as r-4 near a caustic - so that a particular value of r must be chosen for 
the graph. Figure 10(b)  shows three separate curves, which correspond to (3.6) and 
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(4.1) applied to each caustic. The best approximation to the amplitude would involve 
some smooth transition between the curves, as indicated on the figure. For larger r 
the amplitude graph would be similar to figure 10(b), except that amplitude 
intensification close to the caustics would be greater because of the r-? decay in this 
region. Figure lO(c) shows the supercaustic case, when (4.2) must be used. All the 
graphs in figure 10 correspond to a point load, when f is a delta function and P a 
constant. 

5. Comparison with measurements 
In the Southern Summer of 1982, one of us (J. W. D) made further measurements 

of ice deflections due to aircraft landing on the runway at McMurdo Sound, using 
a geophysical wire strainmeter described in detail by Funnel1 (1982) and shown 
diagrammatically in figure 11.  Since no reference level is available for measuring 7 
directly, waves are detected by measuring changes in curvature of the ice sheet, which 
cause small changes in the length of a stretched wire. These length changes can be 
related to the wave amplitude as follows. 

The unit normal vector to the ice sheet is given by 

a = L - V ~ ,  (5.1) 

assuming that Vq is small. From figure 11 i t  can be seen that the vector change in 
wire length due to the wave is 

(5.2) 

assuming that b is much less than one wavelength. Taking 7 proportional to 
exp(ik.x), where k = (1, m )  is the wavenumber vector, we combine (5.1) and (5.2) 
to get 

b, = h,(b*k) ky. 

b,, say, = BB'- A.4) = h,(b*V)R 

The theoretical change in wire length is therefore given approximately by 

Ab = $ (b .  k)2q. (5.3) 

The strainmeter is most sensitive to waves whose crests are perpendicular to the wire, 
when b * k = bk. Waves with crests exactly parallel to the wire fail to register, because 
the posts remain parallel as the wave passes. 

By combining (5.3) with (3.6), (4.1) or (4.2) as appropriate, it is possible to predict 
the response of a strainmeter to the load on the ice during the approach of a landing 
aircraft, assuming that this load is constant and steadily moving. Actually the 
air-pressure distribution on the ice does vary in time ; since the horizontal dimension 
of the excess-pressure region under the aircraft is of the order of the aircraft height, 
the load becomes more concentrated as the aircraft descends. But in any case, as 
shown in $6, we can approximate the load by a constant point force, or delta-function 
distribution f(z, y, t )  = W6(z- V t )  6(y) with Fourier transform P = W/2x, where W 
denotes the aircraft weight. Indeed, this approximation will also be valid after the 
aircraft has touched down. The speed of the aircraft relative to the ground is affected 
in practice by wind shear and braking on the runway, but the constant- V assumption 
should be approximately correct, at  least during the approach. 

To plot a graph of strainmeter response against time, we can regard the strainmeter 
as moving through the steady wavefield with constant velocity - V 2 ,  along a line 
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FIQURE 11. Diagram of strainmeter. 

y = constant. Figure 12(a) shows a graph of 7 against time, while 12 ( b )  and (c) give 
the response of strainmeters aligned parallel and perpendicular to  the runway at the 
same site. The parallel alignment is responsive to the fast elastic waves propagated 
in front of the source, since these crests are approximately perpendicular to  the 
runway, while the perpendicular alignment is most sensitive to waves in the transition 
region (from elastic to gravity waves) where the angle between k and the runway 
is greatest and c = cmin. The predicted response agrees qualitatively with the 
experimental records shown in figure 13, but the theoretical amplitudes are an order 
of magnitude larger. This discrepancy can be accounted for by increasing the assumed 
valueofD byafactorof 10. Theresultingpredictedresponse isshown in figures 12(d-f). 
Not only do the amplitudes then agree well, but the rather longer wave periods seem 
to match the experimental periods more closely. 

Additional field work is warranted, however, because of the following experimental 
uncertainties. 

(i) the value of Young’s modulus E was not determined independently, and typical 
quoted values vary from 5 x lo8 to 5 x 1O1O N/m2 ; ice thickness should also be closely 
monitored ; 

(ii) i t  proved difficult to calibrate the strainmeter in the field, so the experimental 
amplitudes are somewhat uncertain ; 

(iii) the response of the strainmeter depends on frequency, with a cutoff for 
frequencies > 1 Hz - which unfortunately falls in the frequency spectrum of the 
elastic waves; 

(iv) the aircraft speed was only roughly estimated - viz, as the airspeed given by 
the pilot; 

(v) the reference point on the recording chart, corresponding to the aircraft 
position being directly opposite the observer, was not determined. 

6. Discussion 
The mathematical model adopted should predict the wave system generated by 

an  aircraft landing reasonably accurately, and our results do seem to agree qualitatively 
with measurements. The wavecrest pattern and wave amplitudes far from the source 
can be found by simple algebraic methods based on analysis of the wavenumber curve 
C,. Numerical analysis is necessary only in finding the caustic angles, since K = 0 gives 
a high-degree algebraic equation which cannot be solved analytically. 

Figure 12 shows that the strainmeter deflections arc sensitive to the value of D 
(which depends linearly on E and on the cube of h ) ,  and this parameter could be 
estimated by comparing theoretical and experimental amplitudes. One possible 
obstacle may be viscoelastic damping of the waves, which could be of order 10 yo over 
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r5 x m 

7 = m 

170" 

FIGURE 12(a, b,  c, d ) .  For caption see facing page. 
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FIGURE 12(a, b, c). Graphs of theoretical ice displacement and strainmeter response against time 
t ,  at a point whose perpendicular distance from the runway is lo00 m, during the approach and 
landing of a Hercules C130 aircraft of mass 5 x lo4 kg. The time interval corresponds to 0 (direction 
of observation point from the aircraft) varying from 10' to 170'. (a) ice displacement; (b) response 
of a strainmeter parallel to runway; (c) response of a strainmeter perpendicular to runway. For 
the purposes of comparison with experimental records, the aircraft speed in (a) and (b) is 50 m/s 
and in ( c )  is 46 m/s. (d,  e , f )  These curves correspond to (a, b, c), but the ice rigidity parameter D 
has been increased by a factor of 10. 

r 2 x lo-' m 

t = 227 s 
0 = 170" 

L Vll' 
t = 247 s 1 

e = 1700 

FIQURE 13. Graphs of experimental strainmeter response corresponding to figures 12(b, e) and 
12 (c, f 1. 
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a distance of 1 km (Squire & Allan 1980; Bates & Shapiro 1981). An alternative 
strategy could be to  use the phase and period of the oscillations recorded by the 
strainmeter - which also depend on D - to estimate this parameter; then comparison 
of the theoretical and experimental amplitudes would also give the viscoelastic 
damping coefficients. (If phases are to be used it is essential to  locate the reference 
point on the strainmeter record where the aircraft is directly opposite the recording 
site: 0 = !No.) Thus by careful analysis it should be possible to find detailed 
information on the ice sheet from the strainmeter record. 

The point-source approximation to the aircraft loading function, which has been 
used throughout, requires some a posteriori justification. Effectively we have replaced 
P(Z,, m,) by the constant W / ~ K  = P(0,O) in (3.6), which will be justified if P is 
approximately constant over the range of wavenumbers lying on ck. As discussed in 
$5, the lengthscale L for the loading function f(x, y)  can be taken to be the aircraft 
height, or, when the aircraft is close to the ground, its wingspan ( x  20 m). The 
Fourier transform P will vary significantly over a wavenumber scale 25c/L, so the 
condition for validity of the point-source approximation is 

2K 
L 
- % k, = (Zi+m$ 

for all wavenumbers k, on Ck. This condition can be expressed in terms of 
wavelengths, 

L < A,, (6.1) 

for all wavelengths A, appearing in the steady wave field. For an aircraft travelling 
at 50 m/s, A, varies from a minimum of 84 m to about 600 m in the vicinity of the 
caustics, so for an aircraft height of, say, 50 m (6.1) will be satisfied by all but the 
shortest elastic waves. Calculations have been performed for a reasonably realistic 
loading function, and the results differ only slightly from those obtained using the 
point-load approximation (see Davys 1984). This situation is quite different from the 
ship-wave problem, where the longest wavelength is 27cVZ/g and the wavelength a t  
the caustics where the amplitude is usually greatest is 4n V2/3g. For a ship travelling 
at 10m/s the two figures would be about 60 and 4 0 m  respectively, and are 
comparable to a typical ship dimension. 

The assumptions of a homogeneous ice sheet and uniform water-depth are essential 
for our analytic methods, but the results should not be sensitive to small-scale 
inhomogeneities that do not accumulate over a horizontal distance comparable to 
a characteristic wavelength. We have not considered the effects of lateral stress on 
the ice sheet (cf. Kerr 1983; Bates & Shapiro 1980), stratification under the ice, nor 
sea currents, which would introduce anisotropy into the dispersion relation. 

Appendix 
Expression for 7 near a supercaustic 

Our aim is to find an expression for 7 far away from the origin and close to a 
supercaustic line L. To this effect i t  is convenient to choose axes with L as the x-axis, 
so 7 is given by (3.4) in which x is large and y small. Contour integration in the 
( I ,  m)-plane (see Lighthill 1978, $4.9) shows that 
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0 X 8 

(4 (4 
FIGURE 14. (a) Contours Im (2) = -8, in the complex m-plane: ( A )  when Zi4) > 0, and ( B )  when 
lk4) < 0. The contour PQRS represents the integration path when > 0. (b ,  c) Graphs of the 
absolute value and argument of Sc (z) against x. The daahed curves show the asymptotic formula 
(A 5). Note that Sc is an even function, so the graph is drawn only for x 3 0. 

where 6, is some positive constant and C, the wavenumber curve B(1, m) = 0. The 
contour of integration - i.e. the m-axis - is deformed to paths on which Im { l }  = - 6, 
(some small positive constant), so that for large x the contribution from integration 
along such paths is exponentially small. To complete the contour of integration the 
two disjoint sections of Im{2} = -6, must be joined by a path of steepest descent - a 
straight-line segment passing through the point m, where dl/dm = 0. Since L is a 
supercaustic, d21/dm2 and d91/dm9 also vanish at m = m,, so the integration path close 
to m, is as shown in figure 14(a). The only important contribution to 7 arises from 
integration along the straight-line segments S, or 8-, so that when (to fix our ideas) 
(d41/dm4), - ma = li4), say, is positive, we approximete (A 1) by: 

10-2 
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FIGURE 15. Deformation of integration contour C, to path of steepest descent C,. The saddle 
points z = - 1, z = e*&'" are circled. 

where the integration has been extended to infinity in both directions without 
introduction of further significant error, since the integrand is exponentially small. 
Writing (A 2 )  in a form that is independent of the choice of (x, y)-axes and making 
the substitution 

we finally obtain 

where K,, = d2K/ds2 at  the point (Z,, m,) on C,  from which the supercaustic emanates, 
d is perpendicular distance from L,  and the 'supercaustic function' Sc is defined by 

If d2K/ds2 is negative then the necessary modifications to (A 3) are that K,, mean 
Id2K/ds2( and that the function Sc be replaced by its complex conjugate. Figures 
14(b, c) show numerically calculated graphs of the absolute value and argument of 
Sc . 

Asymptotic form of Sc(x) 
An asymptotic expansion of Sc(x) for large x can be found using the method of 
steepest descent. We transform the integral in (A 4) by setting < = xiz and obtain 

ic ,-ix/s 
Sc(z) = 33 eS"3h(Z) dz. 

ls --z ,-in/A 

where h ( z )  = -i[z+fz4]. The zeros of h'(z). or saddle points, occur at z = e*ii" and 
z = - 1 ; and using thc methods described by Ursell(1970), the contour of integration 
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can be deformed into a path of steepest descent passing through z = - 1 and z = edin 
(figure 15). Since the real part of h(z) is greater a t  z = - 1 the contribution from this 
saddle point is dominant and Watson's lemma can be used in the standard way to  
give 

The asymptotic formula is also graphed in figure 14. 
R. B. Paris has drawn our attention to the fact that  Sc(x) can be expressed in terms 

of special functions considered by Bakhoom (1933), and that the asymptotic formula 
(A 5 )  can be derived using results given in that paper. 

We wish to  thank Professor B. S. Liley and Mr R. Holdsworth, of the Physics 
Department of the University of Waikato, for essential help with the experimental 
work. We are also indebted to a referee for suggesting the approximation (2.6) to the 
dispersion relation. 
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